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Small-amplitude wave motion in an inert gas confined between a moving piston and 
a fixed cylinder endwall is studied using the unsteady Euler equations. The waves, 
generated by either initial disturbances or piston motion, reflect back and forth in 
the cylinder on the acoustic timescale. The accumulated effect of these waves controls 
the bulk variations of velocity and thermodynamic variables on the longer piston 
timescale. Perturbation methods, based on the small ratio of acoustic to piston time, 
are employed to formulate the gasdynamic problem. The application of multiple 
timescaling allows the gasdynamic wave field to be separated from the bulk response 
of the gas. The evolution of the wave phenomena, including nonlinear wave 
deformation and weak shock formation during the piston passage time, is described 
in terms of time-dependent Fourier series solutions, whose coefficients are computed 
from a truncated system of coupled nonlinear ordinary differential equations. The 
long-time asymptotic flow field after shock formation is sawtooth-like, in which case 
the Fourier modes become decoupled. A remarkably simple relation between the 
shock amplitude and piston velocity is discovered. It is demonstrated that (i) the 
wave amplitude and frequency strongly depend on the piston motion; (ii) shock 
waves can be damped in a significant way by internal dissipation; and (iii) the 
mathematical approach developed in this study possesses certain advantages over 
the more traditional method of characteristics. 

1. Introduction 
This paper describes a theoretical investigation of piston-generated gasdynamic 

compression and expansion processes. Small-amplitude wave motion is studied in a 
gas-filled cylinder, shown in figure 1, which is closed a t  each end by a moving piston 
and a fixed cylinder wall respectively. The confined gas is assumed ideal and inert, 
with an initial mean state given by (p,*,p,*,T,*). The piston traverses the cylinder 
length L* with an arbitrarily prescribed time-dependent velocity U,*. In the 
meantime gasdynamic waves, generated by either initial disturbances or piston 
motion, propagate back and forth across the cylinder with an acoustic speed large 
compared to U,*. The purpose of the present work is twofold: (i) to develop a basic 
understanding of the gasdynamic effects occurring in the system; and (ii) to explore 
efficient mathematical tools that  can describe wave motion in a confined, variable- 
volume gas medium. 

The study of wave motion inside a cylinder is motivated by potential applications 
to engine-related research. It has been recognized that traditional equilibrium 
thermodynamics cannot accurately describe the compression and expansion 
processes in an internal combustion engine. The gasdynamic disturbances that are 
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FIQURE 1. The physical system : an ideal inert gas in a cylinder confined by a moving piston. 

excluded in equilibrium calculations are inevitably generated by various physical 
and/or chemical sources. The repeated passage of the gasdynamic waves across the 
cylinder is associated with non-uniform spatial distributions of pressure, density, 
temperature and velocity of the cylinder gas. These non-uniformities, albeit small in 
magnitude, can significantly affect self-ignition and combustion processes in a 
cylinder (Klein & Peters 1988). In  this respect, a preliminary study of an inert 
gasdynamic system based on non-equilibrium formulations can be of practical as well 
as basic scientific interest. 

Small-amplitude gasdynamic waves are frequently studied by using perturbation 
techniques in combination with the analytical method of characteristics (see, for 
example, Lighthill 1949: Lin 1954; Betchov 1958 ; Kluwick 1981). Schneider (1981) 
first applied this method to the piston-cylinder problem with extensive piston 
motion. I n  his study the multiple reflections of a weak shock wave generated by an 
initial impulsive piston motion are considered. A multiple-timescale analysis is used 
to resolve the many shock reflections that occur during the relatively long period of 
piston motion. The results are used to explain how multiple passage of a weak shock 
through a cylinder causes the observed bulk compression process. In order to 
construct the equations for characteristic lines and the compatibility relations along 
these lines, both dependent variables and independent space and time variables are 
expanded asymptotically based on small piston Mach number. However, Schneider 
was unable to obtain uniformly valid solutions for coordinate perturbations. Later, 
Klein & Peters (1988) realized that the non-uniformity in Schneider’s asymptotic 
solutions was caused by the variation in wave passage time across the cylinder, as a 
result of piston-generated compression. A progressively stretched time variable was 
applied to adjust such changes. Uniformly valid solutions for gasdynamic quantities 
as well as characteristic coordinates were obtained. Their results show explicitly the 
shock formation processes from initially smooth compression waves, based on the 
development of multivalued regions in the characteristic space. A theory is 
developed to predict the shock formation time in terms of the initial wave shape and 
the piston motion. The analysis is extended further to chemically reactive systems 
to investigate the cumulative effects of the wave passages on the self-ignition of an 
explosive mixture. 

The characteristic-coordinate perturbation technique is effective for solving the 
piston-cylinder problem, but exhibits several limitations. For example, the number 
of equations describing the physical system is increased owing to  the coordinate 
transformations. In  the asymptotic procedure the time and space variables must also 
be expanded asymptotically, in addition to the unknown dependent variables. More 
importantly, the secular equations for the first-order solutions, as developed by 
Klein & Peters (1988), are first-order partial differential equations. A rather 
sophisticated numerical scheme capable of resolving discontinuities must be 
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employed, and solutions can be obtained only a t  discrete values of time and space. 
In addition, it is difficult to interpret the mathematical results in order to find the 
explicit effect of the acoustic waves on the development of the bulk motion and 
properties. 

An alternative mathematical tool, the Fourier series method, has also been applied 
to the study of acoustic wave motion in confined regions. For example, Kassoy (1979) 
and Radhwan & Kassoy (1984) employed this technique in combination with the 
multiple timescaling to describe linear acoustic waves generated in a gas-filled slot by 
boundary heating. In Ochmann’s (1985) Fourier-series-based study of nonlinear 
resonant oscillations in a closed tube, the averaging method, which is closely related 
to the multiple-timescale technique, is used to describe the slowly changing wave 
amplitude. Transport effects are retained in his analysis so that mathematical 
difficulties associated with discontinuities are eliminated. The oscillation is driven by 
a distributed external forcing term. Ochmann derived an infinite system of coupled 
nonlinear ordinary differential equations for the Fourier coefficients. The Fourier 
system is summable when transformed into characteristic coordinates, and leads to 
an inhomogeneous Burgers equation. The above studies are restricted to constant- 
volume systems, so that no changes in the average gas state are included. 

Wang & Kassoy (1990a) applied the Fourier series technique to consider the 
acoustic wave field generated by fast piston acceleration on the short acoustic 
timescale of the cylinder, and its subsequent development during the much longer 
time period when the piston travels towards the cylinder wall with constant speed. 
A multiple-timescale formulation was applied to separate the bulk compression of 
the gas from the instantaneous acoustic wave field. The latter was represented as 
infinite summations of spatially decomposed Fourier modes. In  the nonlinear regime 
the Fourier coefficients are functions of the piston time, governed by an infinite 
system of equations similar to those found by Ochmann (1985). They were evaluated 
numerically to the desired truncation level. This straightforward method is shown to 
be capable of describing nonlinear wave deformation and weak shock formation 
processes during the piston time compression. The analysis is, however, rather 
restrictive in the sense that it describes only a single-stroke compression by a 
basically constant-speed piston. 

I n  the present study we develop a Fourier-series-based solution for more general 
piston-driven gasdynamic motion inside the cylinder, shown in figure 1. The piston 
velocity is described by an arbitrary function of piston time. The initial state of the 
gas is specified in terms of disturbance velocity and density distributions in the 
cylinder, which simulate small-amplitude waves generated previously by various 
physical and chemical sources. It is the objective of the present work to study the 
influence of the varying background state of the gas on the development of the wave 
field, including wave deformation and possible shock formation, and to  show the 
accumulative effect of small-amplitude waves on the global compression and 
expansion of the gas. The analytical approach employed in the present investigation 
is basically the same as that used in our previous study (Wang & Kassoy 1 9 9 0 ~ ) .  
Calculations are carried out for a variety of initial disturbances, when the piston 
moves forward, backward or cyclically. In  particular, the standing sawtooth wave, 
which represents the long-time asymptotic flow field due to the shock generated in 
the cylinder, is examined in detail. In this case the Fourier mode coupling vanishes, 
and a simple solution is obtained to relate the shock amplitude to the subsequent 
smoothly varying piston motion. The present study demonstrates the versatility of 
the Fourier series technique in dealing with wave propagation processes. A 
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comparison is made between our approach and the more conventionally employed 
characteristics method. 

2. Formulation 
First, several important timescales of the closed piston-cylinder system shown in 

figure 1 must be introduced to provide readers with clearer physical insight into the 
formulation which follows. The characteristic time for acoustic wave transmission is 
defined as the acoustic timescale: 

L* tz = - 
co* ' 

where c,* = (yR*T,*)i is the sound speed based on the initial reference state of the gas. 
Another important time in the system is the piston timescale, 

which represents time required for the piston to  complete one stroke. UECh in (2) is the 
characteristic velocity of the piston. Note that the ratio of the acoustic time to piston 
time is the characteristic piston Mach number defined as the ratio of the characteristic 
piston speed to the speed of the sound c:, 

Since initial disturbances are allowed to exist in the cylinder, the characteristic gas 
velocity Uz can be different from Uzch. Therefore i t  is necessary to  define 

L* t* = - u; (4) 

as the characteristic time of gas motion. If the velocity field in the gas is exclusively 
caused by piston motion, the gas has the same characteristic time as that of the 
piston. The longest time used in the analysis is the conduction time defined as 

where KO* is the thermal diffusivity of the initial reference state. For typical gases like 
air at normal conditions, where the Prandti number is of O(l ) ,  (5) defines the 
timescale required for both thermal and momentum diffusion to affect the 
gasdynamic process in a significant way (Radhwan & Kassoy 1984). 

The order of magnitude of the quantities mentioned above can be calculated by 
considering a typical automobile engine with a shaft rotation of 3000 r.p.m. and a 
piston stroke of 0.08 m. One finds in this engine a maximum piston Mach number 
E z 3.7 x a piston travelling time oft: z lop2 s ,  and an acoustic wave travelling 
time of t,* z 2.4 x s based on a sound speed of c$ = 340 m/s. The conduction 
time calculated under ambient conditions (5"; = 300 K ,  p,* = 1 atm) is t? z 290 s. 
The velocity disturbance in a real engine cylinder may be caused by fast heat release 
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resulting from turbulent flame propagation during the combustion process, or by gas 
exchange during the intake or exhaust phases. It is normally small with respect to 
the sound speed. According to Klein & Peters (1988) the typical gas exchange 
velocity is about 30 m/s, thus tt = L*/U,* NN 2.7 x 

The above data suggest that the analysis can be carried out under the following 
reasonable conditions : 

s. 

The complete non-dimensional equations describing the physical system in figure 
1 are identical to those in the previous study by Wang & Kassoy (1990a), 

where it has been assumed that the specific heats are constants. The subscripts t and 
z denote partial derivatives. The non-dimensional variables are defined in terms of 
dimensional quantities (with asterisk) by 

where p* and k* represent the dynamic viscosity and thermal conductivity 
respectively. The parameter y is the ratio of specific heats and 

where the former is typically a quantity of O(lO-s), 
The dynamic boundary conditions on the solid surfaces can be written as 

x = X , ( t ) ;  u=-& dt (t sU,(t), 

x =  1 ;  u = 0, (14) 

where X J t )  is the piston location and UJt )  the scaled piston speed that is of order 
unity. The initial conditions consist of mean field and O ( E )  disturbance quantities, 

for 0 < x < 1, (15) I u(t = 0) = €Ui (X) ,  p ( t  = 0) = 1 +€Pi(X) 
p(t = 0) = 1 + epi(x), T( t  = 0) = 1 + sT,(x) 

where ui, pi ,  pi and 3 are of order unity. A typical piston Mach number considered 
is s = O(0.05). 

2 FLM 221 
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Solutions to the basic system (7)-(10) are to. be sought in the limit E + O ,  S - t O  
where it is noted that 6 < e according to assumptions made in (6). The limiting forms 
of (9) and (10) imply that the most important physical processes in the cylinder can 
be described by the inviscid, non-conducting versions of (9) and (10). In this respect, 
the state, continuity and energy equations can be combined to yield the familiar 
results 

p = pY+ O(S), T = pY-'+ O(6). (16) 

(17) 

It follows from (9) that the momentum equation can be written as 

p(ut + uu,) = -py-lpz + O(6).  

As is pointed out in our previous study (Wang & Kassoy 1990a), transport effects 
may be important in very narrow regions, including shock waves and accommodation 
layers adjacent to solid surfaces described by Rott (1980), where the gas experiences 
steep changes in its velocity and other gasdynamic properties. The simplified non- 
dissipative system can be used to describe the physical processes everywhere in the 
system except inside those regions. Also, the present one-dimensional study is 
concentrated on the explicit effects of gasdynamic processes on equilibrium 
compression and expansion. In this sense the effect of non-planar flow (e.g. vortices 
and turbulence) are not addressed, although they inevitably occur in realistic 
situations. 

For this constant-mass system the analysis is carried out conveniently by using a 
Lagrangian spatial variable, 

s = s  p(2,  t )  d2. (18) 
X,W 

The piston surface z = X J t )  is represented by s = 0, while the fixed endwall 
corresponds to s = 1 as a result of mass conservation, since the total mass of the 
dimensionless system is unity. Once s and t are used as new independent variables in 
place of the Eulerian variables x and t ,  (8) and (17) become 

pt+p2us = 0, ut+pY-lps = O(6).  (19) 

(20) 

s = o ;  u=d , ( t ) ,  s =  1 ;  u = o .  (21) 

The appropriate initial conditions are derived from (15) : 

u(t = 0) = €Ui(S), p(t = 0) = 1 +€Pi(S), 

while the boundary conditions take the form 

Once p and u are obtained, the pressure and temperature are found from the results 
in (16). 

3. General solutions 

(1990u), 
The fast and slow time variables employed in the earlier study by Wang & Kassoy 

are employed here again to help describe acoustic and bulk phenomena in the gas. 
The former is basically the adjusted acoustic time, based on the instantaneous 
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distance between the piston and the endwall. The latter is the dimensionless time 
measured in terms of piston passage time, 7 = t*/t,*. In (22) po is the spatially 
homogeneous leading-order density of the gas defined by the asymptotic expansion 

p = po(7)+€ppI+€2pz+ .... (23) 

(24) 

Additionally, u is assumed to be described by 

u = EU1+E2UI+. * . . 
A multiple-timescale formulation is employed by using the relation 

The expansions in (23), (24) as well as (25) can be inserted into the governing 
equations (19) to find an ordered set of equations in powers of 8. The first- and 
second-order equations are 

(26) 

(27) 

(28) 

(29) 

PQ ‘(Y+l) P l f + A %  = - P W  

&+UU l t  + P n . b  = 0, 

Pb(y+l)Pzs+ P: uzs = - P17 - 2Po P1 U1W 

~zi+Px-1P2s = -%- (7- 1) P7;-2P1Pls’ + 1) 

From (26), (27) i t  follows that the leading-order velocity field is described by 

Ulff = U l S S ?  

which is subject to boundary conditions derived from (21) : 

s = 0 ;  u1 = UP(7), s = 1 ;  u1 = 0. 

The general solution to (30), (31) can be put into the form 

00 

u1 = (1 -9) UP(7) + [afl(7) cos (nd) +pn(7) sin (nnq] sin (nns). (32) 
fl-1 

The results can be used in (26) to obtain 

00 

pi(Y+’)plj = Cpi(7) up(7) - p ; ( ~ ) ]  - p i  nX[afl(7) cos (nd)  +p,(~) sin (nd)]  cos (nns) .  
fl-1 

(33) 
In  order that p1 be bounded for any large f, it is required that 

P;, = P i  Up(7) .  (34) 

The basic density variation can be found from (34) and the appropriate initial 
condition, p0(7 -+ 0 )  

where 

is the displacement 
the basic, spatially 

= 1,  
1 

Po = 1 ---Xp(7) ’ (35) 

of the piston. Equation (35) describes the slow-time variation of 
homogeneous density caused by the changing cylinder volume. 

2-2 
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This zeroth-order solution is equivalent to those obtained by Klein & Peters (1988) 
and Schneider (1981). It is also identical to the result from quasi-static 
thermodynamic calculations, 

The first-order density p1 is now derived from (27), (33)  and (34) ,  

I m 

n-i 
p 1  = p i ( 3 - y )  { ~ ~ ( 7 )  + [ - a,(7) sin (nnf) + ~ ~ ( 7 )  cos (nxt")] cos (nxs) , (37 )  

where /3,,(7) is the zeroth-order Fourier coefficient arising from indefinite integration. 
The functional forms of Po, a, and 8, are indeterminate a t  this stage of the analysis, 
as is typical for the method of multiple scales. 

Initial conditions for the first-order quantities, obtained from (20),  ( 2 3 )  and (24) 
are 

These are substituted into (32)  and (37)  to give 

- 
t = 7 =  0;  u1 = Ui(s) ,  p1 = Pi(+ (38) 

Consequently, initial values for a,, Pn and P,, are obtained from initial disturbances 
of the gas through Euler's formula for Fourier coefficients, 

(40) n =  1,2 ,  . . . ,  1 a,(O) = 2 [ui(s) - (1 - 8 )  Dp(0)] sin ( n m )  ds, J1: 
pi(s) cos ( n ~ s )  ds, 

The time variations of Po, an and P, are found from higher-order equations, by 
following a procedure identical to that used by Wang & Kassoy (1990~).  The major 
steps and results are outlined below. 

The second-order velocity equation is derived from (28), (29) and (34), 

W L - ~ ~ ~ ~  = 2 p i 2 ~ , , + i ( ~ - 7 )  ~ p ( 7 ) ~ o ~ l i s - i ( ~ +  ~ ) P ~ ( Y - ~ ) ( P L .  (42 )  

The right-hand side of (42 )  is evaluated using ( 3 7 ) ,  and the resonant terms 
proportional to sin (nni?) sin (nns) or cos (nnf) sin (nns) are subsequently eliminated. 
This leads to secular equations for ak and Pk,  

B ' - _  k = 1,2,  .... (43) I a; = k ( Y +  1)  PO[^^^(^) 
k - ll6(Y+ 

+ kn(sPOPk + 2 c k - e k ) l ,  

P 0 [ 4 u p ( 7 )  b k +  kn( - s p O  ak + 2 d k - - f k ) l ,  

The quantities c k ,  d,, ek and f, in (43) are Fourier mode coupling terms, 
m m 

' k  = x (an %+k + P n P n + k ) ,  'lc = (an Pn+k-OLn+k Pn) ,  j (44) 
m-1 n=1 

k-1 k-1 

ek = c ( 'kak-n-PkPk-n) ,  f k  = ( a k - n P n + u n P k - n ) ,  
n-1 n-1 
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where e, =fl = 0. 
The first term on the right-hand side of each equation in (43) indicates the 

influence of piston velocity on the behaviour of the Fourier coefficients and, 
consequently, the acoustic disturbances (of. (32) and (37)). The terms proportional to 
Po are caused by O ( E )  corrections to the spatially uniform density of the gas. The last 
two 'terms are responsible for the development of nonlinear phenomena in the 
physical system. They are similar to the mode coupling terms in Ochmann's (1985) 
equation (40) for the complex amplitude function, which does not contain any effect 
of the changing average state. 

The results in (34), (37), (42) and (43) can be utilized to evaluate (28). This gives 
(a detailed derivation can be found in the dissertation by Wang 1989) 

[A -a(? + 1) po Up(7) Po] + non-secular terms. ppl)P2i = 4 ( 3 - - Y )  (45) 

Equation (45) has the same form as (33) in the sense that both indicate the source 
of O(f) growth in densities. The same argument employed previously can be used to 
show that 

T - L  0 - I(? + 1) Po Up(,) P o  (46) 

in order to guarantee a finite value of p2 in the limit when t"-+ 00. Equation (46) can 
be solved easily to give 

Po = P o ( o ) e x P [ t ( ? + l ) ~ P o ( ~ ) L ' , ( i ) d i  1 7 (47) 

which can be integrated to find 

po = P O ( O )  &+l) (48) 

if (34) is used in the integrand. Here pO(O) is the initial value given in (41). 
Given the value of Po, then ak and Pk can be evaluated from (43) together with 

initial conditions (40), using a numerical technique that will be described in detail 
later. 

The solutions to the mathematical system (19)-(21) are now formally complete, 
and are summarized below : 

(50) 

As is expected, (49) and (50) resemble the piston time solutions given in our previous 
study (Wang & Kassoy 1990a). Nonetheless, the current results are greatly 
generalized because they are valid for arbitrary piston velocity and initial gas 
conditions. The first term in (49) and the first two terms in (50) represent the bulk 
effect of uniform compression and expansion of the gas due to piston motion. The 
summation terms are Fourier decomposed standing wave representations of the 
instantaneous acoustic field arising from the initially non-uniform distributions of 
velocity and density of the gas. The piston motion affects the evolution process of the 
wave field, while repeated passage of these waves contributes to the bulk variation 

1 m 
p = p0+e p :1~ , (0 )+p i (3 -~ )  C ~ - o r , ~ 7 ~ s i n ~ n 7 c t " ~ + ~ n ~ 7 ~ ~ ~ ~ ~ n 7 c t " ~ ~ ~ o s ~ 1 2 n ~ ~  + o ( E ~ ) .  { n-1 
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of the gas properties. One advantage of employing the Fourier series technique to 
solve the present problem is that it shows in an explicit manner the acoustic 
phenomenon, the bulk response of the gas, and the interactions between them. 

In addition to gas velocity and density, it is also of interest to consider other 
thermodynamic properties. For example, temperature and pressure are more easily 
measured in a dynamic system. In the present analysis where the isentropic relations 
in (16) are valid, T and p can be found easily : 

Qualitatively both the pressure and the temperature fields of the system exhibit 
variations similar to the density field. Since y > 1 the basic pressure change is larger, 
and the temperature change smaller than the density change. 

Before carrying out a numerical analysis for the equation system (43), (44), two 
simplified cases are worth considering. First, when the cylinder gas is initially static, 
or quasi-static with compatible boundary conditions on the piston face and the 
cylinder wall, ui = (1 -8 )  Dp(0),pi = 0, then according to (40), (41), pO(O)  = 0 and 
ak(0) = pk(0) = 0 for k = 1 , 2 , .  . . . The solution to the homogeneous equation system 
(43), (44), obtained analytically, is a k ( 7 )  = P,(T) = 0. This result illustrates that if no 
disturbance to the quasi-static gas field is present at the beginning, the system 
always remains static or quasi-static up to O ( E ) .  The slow variation of piston velocity 
on the piston timescale does not create disturbances in the gas medium to the order 
considered here, in contrast to the case in the previous study by Wang & Kassoy 
(1990a) where an O(B)  acoustic disturbance is generated by piston acceleration that 
occurs on the much shorter acoustic timescale. 

Secondly, (43), (44) can be greatly simplified if the initial disturbance is confined 
to the velocity profile. This simplification occurs because if pi = 0, then po(0) = 
Bk(0) = 0 for k = 1,2, . . . . The second equation in (43) implies that /?,(T) = 0 because 
it is homogeneous with respect to Pk. The first equation for a, will have a reduced 
form because all the /??,-related terms are dropped out. This simplified system, rather 
than the full system, will be used in subsequent calculations whenever the condition 
pi(s) = 0 is satisfied. 

4. Numerical results 
4.1. Numerical method and error analysis 

In order to obtain solutions for the velocity and thermodynamic properties of the gas 
in the cylinder. One must construct solutions to truncated forms of (49), (50) and use 
finite summations as approximate answers. If it  is desired to add up N terms in the 
Fourier series, 2N coupled equations for ak and pk from (43) have to be solved. The 
infinite summations appearing in ck and d, in (44) have to be truncated a t  the 
(N-  k)th Fourier mode in order to close the mathematical system. These truncations 
are based on the assumption that the geometric series of Fourier coefficients in (44) 
are convergent. This can be readily verified even for the severest case of discontinuous 
solutions in (49) and (50), for which both a, and pfi behave like l/k. 

The relative truncation errors introduced into the mathematical system can be 
estimated in the order-of-magnitude sense. Since a, and Pk: are of similar magnitude, 
either of the equations in (43) can be taken as the basis of evaluation. Since the series 
in (44) is convergent, the first neglected term should give an overall order-of- 
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magnitude estimation of the total truncation. Thus the truncation error of the kth 
equation is of O(ka,-,+, while the largest term in the equation is of O(ka,  ak+,). 
Consequently the relative truncation error of the kth equation is 

The k-dependence of the ak, pk coefficients and hence the convergence behaviour of 
a Fourier series are determined by the properties of the original function. According 
to Kufner & Kadlec (1971), ak,Pk - l / k  for a function with discontinuities (such as 
a shock wave), while uk, Bk - i l k 2  for a continuous function with discontinuous first 
derivative (such as a piston-generated acoustic wavefront (Wang & Kassoy 1990a, b ) ) .  
It follows from (53) that 

for shock case, 

(54) 
for shock-free case. 

( k -  1)’ 

Obviously, when k gets closer to N the truncated equations in (43), (44) become less 
accurate relative to  those for small k-values. Terms with relatively large error are 
avoided by using only the first Lfl to zfl Fourier modes in the series to calculate the 
velocity and density of the gas. The optimal number of modes is determined by 
numerical experimentation. It should be noted from (54) that  the truncation error for 
a shock-free system is the square of that for an embedded shock system. As a result 
the numerical solutions are always reasonably accurate for continuous acoustic wave 
fields, while they become increasingly inaccurate once a shock is present. It should 
be pointed out that the preceding truncation-error analysis is based on each 
individual equation. I n  the numerical procedure 2N equations are integrated 
simultaneously, so that the errors tend to spread out among different Fourier 
coefficients. However, this effect is small because terms with relatively large errors 
are of small absolute magnitude. 

Numerical integrations of the truncated version of equation system (43), (44) with 
initial conditions (40) are carried out by utilizing the DGEAR subroutine available in 
the IMSL computer software library. The subroutine is adapted from a package 
designed by Hindmarsh (1974) based on Gear’s subroutine DIFSUB (Gear 1971). By 
proper choice of the input basic method indicator in DGEAR, the Adams methods (up 
to order twelve), which are basically of the implicit predictor-corrector type, are 
employed. This choice is suitable because the differential equation system is non-stiff. 
The corrector iteration method employed is of the functional iteration type. In  the 
calculations that follow, the relative error tolerance per time step is set to  be 
which is sufficiently small considering the intrinsic truncation errors in the 
approximate system. The truncation level is typically taken as N = 300, so that a 
total of 600 equations are solved simultaneously to obtain al-a300 and p1-P300. 
Among them between 100 and 200 terms are actually used in the Fourier summations 
in (49)-(52). Production runs were conducted on the satellite-linked CYBER 205 at 
the John Von Neumann Supercomputing Center in Princeton. It is important to 
mention here that the large number of terms were computed in order to attain 
sufficient resolution for shocks, and hence an accurate appraisal of the method in 
dealing with the shock. For practical purposes one can obtain cruder but 
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FIQURE 2. Velocity distributions in the Lagrangian coordinate s during piston time compression, 
up = 1. The initial gas state is described by ui = I -s+fsin (xe) and pi = 0. The piston Mach 
number E = 0.02. 
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representative solutions with fewer Fourier modes (20 to 50 terms, say) without 
significant loss of accuracy, especially before shock formation. A VAX-class 
mainframe computer can well serve this purpose. 

4.2. Compression of an initial disturbance: comparison with Klein & Peters' results 
The general formulation developed in the present study can be applied easily to 
compression systems with a variety of initial and boundary conditions. In the 
example considered here, a cylinder of gas undergoing uniform compression by a 
constant-speed piston is perturbed by a sinusoidal velocity disturbance at an 
arbitrarily defined initial time instant. The piston velocity function and the initial 
conditions of the gas are described by 

'1 UJ7) = 1, 

P&) = 0, ui(s) = l-s+$sin (m), J (55) 

which are equivalent to those used by Klein & Peters (1987 personal communication, 
1988) in their studies of shock formation during cylinder compression, with the 
exception of a phase shift in the harmonic wave shape function. The initial velocity 
profile across the cylinder is shown as the uppermost curve in figure 2, where the 
curve section with negative (positive) slope is compressive (expansive), As time 
evolves the compressive part of the wave steepens to form a shock, while the 
expansive part flattens as the wave propagates back and forth in the cylinder. The 
process can be observed clearly from the other three velocity curves in figure 2 at 
7 = 0.10, 0.15 and 0.20. At 7 = 0.2 the velocity curve becomes almost sawtooth-like. 
The piston Mach number used in the calculation is B = 0.02. Owing to the small ratio 
of the acoustic to piston timescale, several wave reflections have occurred between 
two neighbouring time instants depicted in the figure. 

In figures 3 (a)  and 3 (b)  the temperature variations at  the piston surface s = 0, and 
at  the material point s = t, are depicted respectively. The alternating arrivals of the 
compression and expansion wave portions at the given location cause the 
temperature to oscillate around the bulk value, which is spatially uniform, and is 
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FIGURE 3. Temperature variations at  specified material points s during piston time compression, 
up = 1. The initial gas state is described by ui = 1 -s+%sin (ns) and pi = 0. The piston Mach 
number E = 0.02. Case (a )  s = 0, case ( b )  s = f .  

represented by the monotone increasing line in each figure. The gas temperature rises 
owing to compressive heating, and drops when thermal energy is converted into 
kinetic energy during the expansion phase. As the compression part of the wave 
steepens to form a shock, its passage time through the given location tends to zero, 
as is seen on the T-r curves. Figure 3 (a)  is plotted under identical conditions to those 
of figure 4 in Klein & Peters’ (1988) study. Good agreement is observed between both 
figures in terms of the wave deformation process and the shock formation time. A 
more quantitative comparison would require the phase value in Klein & Peters’ 
initial wave shape function, which was not reported. The material point at 8 = 4 (cf. 
figure 3 b )  experiences the same wave portion after it travels a round trip between the 
mass point and one of the solid boundaries. The two characteristic round-trip times 
are clearly visible after considerable steepening of the wavefront. They arb not equal 
owing to the non-symmetric locations of the two confining boundaries relative to the 
given material point. The density and pressure a t  a given mass location will exhibit 
similar oscillatory variations with different amplitudes, as is anticipated from (51) 
and (52). Calculations are terminated shortly after the shock formation, when 
convergence properties of the truncated series begin to deteriorate. One can 
nonetheless observe clearly the tendency for the wave field to approach its 
asymptotic sawtooth shape. 

In a compressing system the compressive wavefront always steepens to form a 
shock. The time for this process to occur is dependent upon the amplitude of the 
initial disturbance. Calculations with smaller initial velocity disturbance input show 
longer shock formation time. 
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FIGURE 4. Zeroth- and first-order density variations of the gas on the piston surface, which moves 
out of the cylinder with constant velocity up = - 1. The initial gas state is described by 
ui = - (1 - s) - h sin (ns) and pi = 0. The total density p = po + epl. The piston Mach number 
E = 0.05. Case (a) h = 0.3, case ( b )  h = 1.0. 
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4.3. Expansion of an initial disturbance 
The evolution of initial sinusoidal disturbances in an expanding environment is 
illustrated by a second example. Consider the case when the piston moves out of the 
cylinder a t  constant velocity, up = - 1. The initial disturbance of the gas is given by 

ui(s) = -(l-s)-hsin(m), pi($) = 0, (56) 

where h is a constant reflecting the amplitude of the disturbance. If Ihl < 1 / ~ ,  du,/ds 
is positive for any s-value, hence the initial acoustic wave is purely expansive. I n  this 
expansion system no shock wave can be formed owing to the lack of mechanisms to 
generate compressive regions in the gas. This is graphically demonstrated in figure 
4 (a ) ,  where the zeroth- and first-order density on the piston surface s = 0 are plotted 
with respect to time, for the case when h = 0.3 < l/n. and e = 0.05. The oscillatory 
p1 is caused by repeated reflections of the expansion wave on the piston face. The 
wave deformation is obviously seen in the figure but no shock formation is achieved. 
It is observed that the wave field is damped as the global expansion process proceeds. 
In the meantime, the wave-passage frequency decreases significantly owing to the 
extended distance between the piston face and the cylinder wall, as well as the 
reduced sound speed caused by gas temperature reduction associated with expansion. 

If, on the other hand, Ihl > l /x ,  then the initial velocity profile ui(s) has two 
distinct portions, a compressive portion (dui/ds < 0) and an expansive portion 
(dui/ds > 0) .  Even during an expansion process the former part of the wave will 
steepen to form a shock. The results in figure 4 ( h )  are for h = 1.0 and c = 0.05. In the 
present case the shock is formed a t  T x 1.0, after which the p l ~  curve approaches 
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FIQURE 5. Velocity distributions in the Lagrangian coordinate s, generated by impulsively started 
backward piston motion up = - 1, in an initially static gas. The piston Mach number E = 0.05. (a) 
Short-time solutions, ( b )  solutions at more extended time. 
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sawtooth shape. The amplitude of the disturbance is found to decrease with 
increasing cylinder volume. 

The next calculation describes the expansion in a gas due to impulsively started 
backward piston motion. The gas is initially a t  rest and in thermodynamic 
equilibrium: ui = O,p, = 0. At t = O+ the piston begins to move away from the 
cylinder endwall with constant speed, = - 1. The instantly generated gas flow 
consists of two regions of velocity - 1 and 0 respectively, separated by a rightward- 
propagating rarefaction wave whose velocity varies linearly from - 1 to 0. This is 
shown in figure 5 (a ) ,  which presents the instantaneous velocity distributions of the 
gas in the Lagrangian coordinate, a t  some specified times prior to the first reflection 
of the rarefaction wave on the cylinder wall. The two boundaries of the rarefaction 
wave are weak discontinuities whose speeds of propagation are different from each 
other, which leads to a broadening of the rarefaction wave. The small oscillations 
observed at the two edges of the rarefaction wave are Gibbs effects, which are related 
to the steepness of the rarefaction wave. It disappears gradually as the rarefaction 
wave flattens out. Before the rarefaction wave reaches the opposite cylinder endwall, 
the flow field of the gas is identical to that in a semi-infinite cylindrical pipe 
considered by Landau & Lifshitz (1959), where analytical solutions are given. In  the 
later development of the wave field, the two weak discontinuities are reflected 
repeatedly from the solid boundaries. The distance in between may become so long 
that the rarefaction wave can no longer be identified as a whole in the cylinder. This 
situation is depicted in figure 5 ( b ) ,  for the velocity distributions a t  more extended 
times. In this figure the time intervals between two neighbouring curves are so long 
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FIGURE 6. Velocity and density variations a t  specified material point s = i, in a cylinder gas subject 
to piston motion 0, = sin (2x1) .  The initial gas state is described by p, = -0.5 cos (m) and u, = 0. 
The maximum piston Mach number E = 0.05. (a )  Velocity, (b )  zeroth- and first-order density. 

that one can no ionger follow the propagation of the rarefaction wave, as is the case 
in figure 5 (a). The boundaries of the rarefaction wave can still be identified clearly 
as the points of discontinuous slopes. The time variations of density and velocity at  
any spatial location can also be easily plotted. 

4.4. Periodic piston motion 
The response of a confined gas to periodic piston motion is of practical interest 
because of its relevance to reciprocating engines. In the case considered here, the 
piston velocity is given by up = sin ( 2 ~ ) .  The initial density disturbance is defined 
by pi = -0.5 cos (m), while the initial velocity is zero, so that it is compatible with 
the piston speed at 7 = 0. The cases of unequal piston-gas velocities at  the interface 
are considered in ss4.3 and 5 respectively. The maximum piston Mach number 
considered here is E = 0.05. 

The result shown in figure 6(u)  is. for the velocity variation with time at the 
Lagrangian coordinate s = a. The slowly varying curve with period 1 is the average 
velocity of the material point, and the rapidly fluctuating curve represents the actual 
velocity of the point due to the acoustic field. Initially, owing to the positive density 
and pressure gradients at  s = 4, the gas particle tends to flow in the negative direction 
until the other portion of the density disturbance of negative gradient reaches this 
location and reverses the flow direction. At later times as the disturbance travels 
back and forth in the cylinder, the velocity of the gas fluctuates correspondingly 
around its bulk mean value. The zeroth- and first-order density variations with 7 at 
the same location are given in figure 6 (b) .  The amplitude of the density disturbance 
increases during the compression stroke, owing to the rising bulk density, as is 
expected from (50). During the expansion stroke the reversed effect is observed. The 
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wave-passage frequency increases with po, owing to both the reduced wave travelling 
distance and the increased sound speed. One observes that the global expansion of 
the gas during the expansion stroke of the piston does not prevent the shock 
formation process. After the shock is formed and the wave tail is flattened, one 
observes in figure 6 abrupt changes in u and p1 with time as the shock passes the 
given location, followed by slow variations of the two quantities as the wave tail 
travels through. The wave shape again approaches a sawtooth. The effect of two 
different characteristic round-trip times between the given mass point and the two 
confining solid walls, is again clearly observed in figure 6 after the shock formation. 
Calculations with various initial conditions also show longer shock formation time for 
smaller amplitude waves. 

The example calculations carried out in $4 have demonstrated the effectiveness of 
the Fourier series technique in describing acoustic wave evolution in both 
compression and expansion processes. The numerical solutions, however, become 
unsatisfactory soon after the shock appears in the system, owing to large truncation 
errors in approximating the infinite equation system (43), (44). I n  the next section 
we concentrate on a special class of shock waves, the so-called ‘standing sawtooth 
wave’, which is the long-time asymptotic behaviour of the general shock wave fields 
considered above. For this type of wave the infinite system (43), (44) can be solved 
without truncation, and hence excellent results are obtainable. 

5. Piston-driven sawtooth waves 
5.1. Standing sawtooth wave 

It is well known that as a result of nonlinear convective distortion, a compressive 
acoustic wave of finite amplitude propagating in a semi-infinite space has an 
asymptotic waveform of a sawtooth (Whitham 1974), often referred to as a simple 
sawtooth wave. In a finite geometry standing waves can be thought of as 
superpositions of counter-propagating travelling waves (Ochmann 1985 ; Klein & 
Peters 1988). As a result, one can think of the asymptotic form of a standing wave 
as a superposition of simple sawtooth waves travelling in opposite directions, 
provided that no external excitations are applied to the wave system. 

If external excitations are imposed on the system, on a timescale long compared 
with its acoustic timescale, the limiting waveform after the shock formation is also 
sawtooth-like, as evidenced in the calculations of Schneider (1981), Klein & Peters 
(1988) and those in $4 of the present paper. Chu (1963) discusses another interesting 
case where the standing sawtooth wave is present, and provides a graphical 
illustration of the waveform. It consists of two lines of identical slope separated by 
a travel1ing.shock which is repeatedly reflected from both solid walls. 

On the other hand, if the gas column is driven externally on the acoustic timescale, 
as in the resonant studies conducted by Betchov (1958) and Chester (1964), the 
limiting-cycle behaviour of the gas motion reflects the characteristics of the piston 
motion, and is thus not sawtooth-like. This class is irrelevant to the present work. 

Travelling sawtooth waves can be represented easily in terms of Fourier series. A 
treatment of this type is given by Temkin (1969), where the acoustic velocity and 
pressure fields inside a tube are written as Fourier-decomposed standing sawtooth 
waves, obtained by superposing identical leftward- and rightward-running trains of 
sawtooth waves with a wavelength twice the tube length (cf. equations (15)-(17) in 
Temkins’s study). The resulting expressions are quite simple and compact. It is 
important to point out, though, that the velocity expressions in Temkins’s paper 
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must be multiplied by -1  in order to satisfy Euier equations and the entropy 
condition for the gasdynamic system. Additionally, the corresponding graphical 
illustrations must be altered appropriately. As presented they actually represent a 
spurious rarefaction shock, not compatible with the given pressure expression. 

The compactness of Fourier series representations of sawtooth waves suggests to 
us that great simplification may be achieved for the general results derived in $3, if 
they are applied to sawtooth waves in the piston driven cylinder gas. 

5.2. Derivation of shock equations 
We consider a sawtooth velocity field with velocity jump A, = ul(s = 0-)- 
ul(s = 0+) > 0 and compatible density jump in the cylinder. The discontinuity is 
assumed to be located initially on the piston surface a = 0 to simplify the analysis, 
although cases with arbitrary initial shock position can also be treated by 
incorporating a phase angle in the subsequent derivations. Specification of the initial 
shock position a t  s = 0 imposes no important restrictions on the generality of the 
problem. It is an exact representation of the case when the shock is generated 
instantaneously by an impulsively started piston. For shocks formed after long-time 
evolution, it should always be possible to choose the starting point of an analysis as 
the time at  which the shock lies against the piston face. 

Given the piston velocity 0J7) and the gas velocity jump A, adjacent to the piston 
face, the initial velocity field of the gas is described by the linear profile 

ui = [.!7p(0)-Ai](1-4. (57) 

If the shock is initiated by an impulsive piston motion, then A, = 0,(0) and u, = 0. 
The compatible initial density field is uniform everywhere except for an abrupt 
change on the piston face where the shock is present. Thus pi = 0. From (40), (41), 
(43) and (48) one finds that /3,(7) = 0 and p,(7) = 0 for k = 1,2 ,  . . . . The differential 
equations for ak are reduced to 

where the last summation is equal to zero when k = 1. The initial conditions for ak 
are obtained from (57) and the first equation in (40), 

2 
kn: 

a,(O) = --Ai. 

The form of (59) suggests that solutions of the type 

c) 

(59) 
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It can be proved easily, using the method of mathematical induction, that 

As a consequence, (61) becomes k-independent. The resulting equation for A(7) and 
the corresponding initial condition can be written as 

A(7 = 0) = Ai. (65) 

Equations (60) and (64) define a nonlinear mathematical system equivalent to the 
infinite system (58). The new describing system is enormously simpler than the old 
one because it has no coupling between different Fourier modes. Nonetheless it has 
some of the nonlinear features of the old system. By solving a single-amplitude 
equation, (64), one can obtain the Fourier coefficients to any order. Since no 
truncation is made in the derivation of (64), the resulting Fourier series is guaranteed 
to converge, and excellent results can be obtained to resolve the shock propagation 
in the cylinder for any period of time. 

The velocity and density of the gas, obtained by combining (49), (50) and the 
preceding results of this section, take the form, 

1 “ 2  
(1-s)Qp(7)-A(7) x -cos(kxQsin(kxi) +O(e2) ,  

k-1 kn 

“ 2  
p = po +~[p$(~-y)A(7) ]  2 -sin ( k d )  cos (kxs)  + 0 ( s 2 ) .  

k-1 k7T 

The pressure and temperature of the gas are calculated subsequently from the 
density field via (51) and (52 ) ,  

(69) 
“ 2  

T = pg-’ + e[ (y - 1) pi(7-’)A(7)] 2 -sin (hi) cos (km)  + O ( 2 ) .  
k-1 k.x: 

Equations (66)-(69) are Fourier sine and cosine series representations of velocity 
and thermodynamic properties of the gas, respectively. Each Fourier summation 
represents a standing sawtooth wave, which can be decomposed into identical 
rightward- and leftward-travelling simple sawtooth waves of length 2. For example, 
(66) can be put into the form 

u m 1  
- = (1-8) 0 , ( 7 ) - A ( ~ )  -{sin[kn;(s-Q]+sin[kn(s+Q}. 
E k-1 kx 

The same treatment can be applied to equations for p, p and T. Equations (66)-(70), 
obtained through rigorous mathematical derivations, are seen to be similar to those 
‘suggested’ by Temkin (1969). 

Given (70), the lowest-order shock path lies either on the characteristic lines s- 
t ”=  const. or on s+F= const., because its direction of propagation is reversed each 
time it hits the confining walls a t  s = 1 and s = 0 (see figure 7) .  The shock path 
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FIGURE 7 .  Path of the shock wave generated by impulsive piston motion, in the Lagrangian 
coordinate s. 
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divides the (f, 8)-plane into triangular regions, each with continuous velocity and 
thermodynamic properties. This agrees to the leading order with calculations based 
on the method of characteristics, where the path of the weak shock is usually 
constructed from the boundaries of the multivalued regions using the bisector rule 
(Kluwick 1981 ; Klein & Peters 1988). 

The height of each sawtooth is modulated by the 7-dependent group of parameters 
in front of the summation. One obtains from (66)-(69) 

[UI = f47), [p] = &-y’A(T) ,  

[PI = sypp+Y4 (7) , [ T] = €( y - 1 ) pp-?4 ( T ) ,  (71) 

where [ ] denotes the jump of it quantity across the shock. In  the above expression 
for [u] the positive (negative) sign corresponds to the case when the shock propagates 
in the positive (negative) direction. The conventional definition of the shock strength 
z is given by 

(72) 
I31 

2 = - = O(E) ,  
Po 

where po  = p1; is the spatially homogeneous pressure term in (68). With this 
definition, the shock conditions (71) can be expressed in terms of normalized values: 

where T, = is the O(1) spatially homogeneous temperature, c,, = p@’-l) is the 
dimensionless sound speed of the mean field, which is to order E also the propagation 
speed of the shock. Relations (73) are, to first order in the shock strength, in 
agreement with the jump conditions given by the Rankine-Hugoniot law for weak 
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shocks (Whitham 1974), although they are derived directly from the non-dissipative 
Euler equations. Equations (73) also prove that (66)-(69) are indeed weak solutions 
to the Euler equations, because their continuous parts satisfy the differential 
equations, and their jump values across the discontinuity satisfy jump conditions 
derived from the equations. 

5.3. Fundamental solutions 
Solutions to the gasdynamic system require the evaluation o f A ( ~ ) ,  governed by (64), 
(65). A discussion of (64) and its two fundamental solutions is presented here first, to 
relate the present work with earlier investigations, and to provide clearer physical 
interpretations for the general solution to be given in $5.4. 

It is noted that positive A(7) values represent compressive shocks, while negative 
A(7)  values correspond to discontinuous rarefaction waves or rarefaction shocks. 
Although the jump conditions (73) are satisfied by both types of discontinuities, 
rarefaction shocks are not admitted in physical systems because they cause the 
entropy of the gas particles to decrease (Lax 1973; Smoller 1983). As long as A, > 
0, A(7) is expected to be positive-definite, to ensure physically meaningful solutions. 
Thus from (64) it is clear that A(7) tends t b  increase when A(T) < Op(7), and decrease 
when A ( T )  > op(~).  The rate of change in A(7) is proportional to the mean density 
field. 

Two fundamental solutions of (64), (65) are obtained immediately : 

(i) Solution for Up = 0 
This case corresponds to a shock propagating in a constant-volume cylinder with 
zero external force. In this case po = 1, and (64) agrees with Ochmann’s (1985) 
equation (46) in the absence of transport effects, where it is recognized that h = 8A. 
Equation (64) can be integrated easily to give 

where 7 = E t  is the dimensionless time based on the characteristic time of convective 
gas motion, since there is no characteristic piston time in this constant-volume 
cylinder. The above relation shows how the velocity jump across the shock decreases 
with time from its initial value A,. The long-time behaviour of A is inversely 
proportional to T .  By employing the shock relations in (73), (74) may be rewritten as 

to describe the damping of the shock strength. Here x = t is the total distance 
travelled by the shock wave before its strength decreases from zi to z. Relations (74) 
and (75) can also be derived conveniently by application of the combined bisector 
and area rules, described by Whitham (1974) and Lighthill (1978), to the sawtooth 
wave. 

Since no energy exchange exists between the static piston and the wave field, the 
decay of the shock can only be a result of the accumulated dissipation effect inside 
the shock. It is important to point out that weak solutions of the Euler equations do 
contain energy dissipation across the discontinuity, because the isentropic relations 
are satisfied only on the continuous parts of the solution. The jump conditions (72), 
(73) determine the dissipation of acoustic energy by the shock, even without 
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knowledge of its internal structure. It is noted that (75) has a form identical to the 
classical formula describing the attenuation of repeated shock waves of wavelength 
2 propagating in an infinite medium (Morse & Tngard 1968). The latter is derived 
based on the argument that the rate of entropy increase across the shock must be at 
the expense of the acoustic energy. The shock reflections on rigid boundaries are thus 
seen to have no effect on its energy loss. 

(ii) Solution for Ai = UP(7) = 1 

This corresponds to the well-known case of an impulsively started, constant-velocity 
piston motion into an initially undisturbed gas. In this case the solution to the 
system (64), (65) is A(7) = 1. A shock wave propagates back and forth inside the 
cylinder, separating two homogeneous regions of velocity 1 and 0 respectively. The 
jumps in p ,  p and T across the shock can be evaluated from (71). They are strongly 
amplified by global gas compression as the piston moves towards the cylinder 
endwall. 

In the present case as well as more general cases that will be considered in $5.4, the 
piston motion and the internal dissipation of the shock both contribute to variations 
in shock amplitudes. The contribution from the piston is positive if it  does work on 
the wave field; negative when acoustic energy is extracted by the piston. The effect 
of shock dissipation is always negative. In  view of the significant shock attenuation 
caused by its internal dissipation, as illustrated in the first fundamental solution, the 
latter mechanism should not be ignored when interpreting results involving a moving 
piston. 

5.4. Solutions with arbitrary piston motion 
The nonlinear amplitude equation (64) can be rewritten as 

When integration is carried out by using (34) and (65), the result is obtained in a 
remarkably simple form : 

Equation (77) shows that A(7) is indeed positive-definite for any A, > 0. The 
integral in (77) is believed to be associated with the accumulated internal dissipation 
of the shock, because its monotone growth with time always contributes negatively 
to the shock amplitude. It is in fact the term that causes the shock to decay in (74), 
(75), where po = 1. In  general, the shock amplitude depends on the global density po, 
and thus the shock dissipation is also a function of po. The effects of piston-generated 
compression and expansion are included in po, which is related to piston velocity 
through (35), (36). One observes from (77) that the initial wave amplitude A, has 
little influence on the long-time solution of A ,  which always approaches zero. 

If A, is negative, the right-hand side of (77) must vanish at a certain time instant 
as the integral grows. This leads to unbounded shock amplitudes, and is clearly 
unacceptable. As mentioned earlier, physically this branch of solutions corresponds 
to spurious rarefaction shocks that violate the second law of thermodynamics. 

In  order to study quantitatively the effect of piston acceleration on A ( T ) ,  (77) is 
evaluated numerically for the case of a constantly accelerating piston, Up = 1 +a?. 
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FIGURE 8. Time variation of velocity jump 4 7 )  across the shock wave generated by impulsive 
piston motion, Up = 1 +u7, as calculated from (77). 

The sudden start of the piston at 7 = 0 generates a shock of Ai = 1 in the originally 
quiescent gas. Results are shown in figure 8 for four selected values of piston 
acceleration. If the piston acceleration a is positive, as is the case of a = 1.0 shown 
by,$he upmost curve in figure 8, the velocity jump A increases monotonically with 
r. Since the difference between Up and A ( T )  provides the driving potential for the 
latter (cf. (64)), the value of A may never exceed up. The piston reaches the opposite 
cylinder wall when 7 = 1 / 3 -  1, beyond which the solution for A is physically 
meaningless and is ignored. The horizontal straight line in figure 8 corresponds to the 
second fundamental solution mentioned previously, for a constant-speed piston 
motion (a = 0) ,  in which case the driving potential is zero, andA(7) remains constant 
always. The piston reaches the cylinder endwall when 7 = 1. On the other hand, if a 
is negative, the velocity jump associated with the shock is seen to decrease with 7 ,  

as is seen from figure 8 for the cases of a = - 1 and -2. In these two cases, the 
deceleration process reverses the direction of the piston motion before it ever reaches 
the cylinder endwall. As the piston accelerates further in the negative direction, A 
approaches zero asymptotically. 

Given the jump value of velocity across the shock, the corresponding jumps for 
pressure and other thermodynamic properties can be evaluated from (71).  It is 
important to note that although the normalized jump values of u, p ,  p and T are 
proportional to one another (cf. (72), (73)), their absolute values do not behave in the 
same manner, owing to the p,-dependent coefficients in (71). For example, if the 
cylinder gas undergoes a compression process by a decelerating piston, as are the 
cases of a = - 1 and a = -2 before the piston reaches the uppermost poinfs, then 
according to the above analysis A(7) decreases with time, while the value of po 
increases. The combined effect of A and po may cause both magnification and 
damping in the jump values of p ,  p and T, depending on the relative magnitudes of 
the two effects. 

The pressure variations at  the piston face are shown in figures 9 (a )  and 9 (b ) ,  for 
the cases a = 1 and a = - 1 respectively. The variations in bulk pressure are also 
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FIGURE 9. Pressure a t  the piston surface, generated by impulsive piston motion, Up = 1 +a?, into 
an initially static gas. The initial piston Mach number E = 0.05. Case (a )  a = 1. case ( b )  a = - 1. 
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shown as the centred, smooth lines. When a = 1 both A andp, increase monotonically 
with time. Thus the pressure jump upon each shock reflection on the piston surface, 
as shown in figure 9(a),  also increases with time. The frequency of shock passage 
increases as the forward-moving piston compresses the cylinder gas. Between two 
successive shock reflections the gas pressure rises smoothly as an accumulative effect 
of passages of continuous compression signals generated at the piston face. As the 
piston acceleration continues the stronger compression signals cause faster pressure 
rise, thus increasing the slopes of the continuous p r  curve sections. When a = - 1 
(cf. figure 9b) the bulk gas pressure rises a t  first as the piston travels forward with 
decreasing velocity, until it becomes zero. Subsequently the piston starts to move 
backward, producing an expansion process in the gas. From figure 9 (b)  it  is seen that 
during the compression stage the pressure jump increases with increasing mean 
pressure, even though the velocity jump is monotonically decreasing. During the 
expansion process both velocity and pressure jumps decrease. The variations in 
shock passage frequency and the slopes of the continuous p 7  curve sections can be 
explained by using the same reasoning as employed for figure 9(a).  

It is worth pointing out that although the results in figures 8 and 9 are obtained 
for constant piston acceleration, they are characteristic of a more general class of 
piston motion. An analysis of (64) shows that as long as Up is a monotonic function 
of 7 ,  dA/dUp is always positive. The amplitude A(7) approaches either Up or zero, 
depending on the sign of Up. 

If, on the other hand, Up(.) changes sign during the piston motion, the variations 
of A(7)  and op(7) are not always in phase. In  the physical system both compression 
and expansion signals coexist, resulting in a more complex response of the velocity 
jump across the shock. As an example of this case the periodic piston motion used 
in the study by Klein & Peters (1988), 

OP(7) = +7t cos (w), (78) 
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FIQURE 10. Velocity variations at specified material points 9 ,  generated by impulsively started, 
periodic piston motion, u, = 4 5 ~  cos ( ~ E T ) ,  in an initially static gas. The characteristic piston Mach 
number e = 0.05. Case (a) s = 0, case (b) s = f. 

is employed. The shock is again induced by the impulsive piston motion at  7 = 0, so 
that ui = 0. Plotted in figures lO(a) and 10(b) are velocity variations of the gas 
particles at s = 0 and s = t respectively, for a complete cycle of piston motion. The 
corresponding pressure variations are depicted in figures 11 (a)  and 11 (b ) .  As in the 
previous figures, the smooth lines in figures 10 and 11 represent the bulk response of 
the gas. The jumps in both velocity and pressure correspond to shock passage at the 
given mass location. The material point at  s = 2 experiences twice as many shock 
passages as does the piston face, because it receives the shock from both directions. 
The two neighbouring time intervals between successive shock passages in figures 
10(b) and 11 (b )  are not equal, owing to the different shock round-trip times between 
the mass point at  s = a and the two confining solid walls. It is important to notice 
from figures 10 and 11 that there is damping of the shock after one cycle of piston 
motion. Calculations for longer time duration show that the shock wave will further 
decay away after repeated cycles of the piston stroke, at3 is illustrated in figure 12, 
where both A ( T )  and up are depicted us. 7.  A(T)  decreases with 7 in an oscillatory 
manner. The local maxima and minima of A are reached whenever A = Up, as is 
expected from (64). On the same figure, the velocity jump of a shock propagating in 
a static piston-cylinder system, as calculated from (74), is also depicted as the dashed 
line. Since the latter purely represents the effect of shock-generated dissipation, it 
appears that the overall damping of the shock during the cyclic piston motion is due 
to its internal dissipation. The piston produces localized amplification and damping 
to the shock during different phases of its oscillation. 

The results in figure 11 (a )  for 0 < 7 < 1 are in agreement with figure 6 in Klein & 
Peters’ (1988) study, based on a qualitative comparison of the respective pressure 
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FIQURE 11. Pressure variations at  specified material points s, generated by impulsively started, 
periodic piston motion, Up s in  cos ( ~ 7 ) ,  in an initially static gas. The characteristic piston Mach 
number 8 = 0.05. Case (a) 9 = 0, case (b) s = f .  
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FIGURE 12. Time variation of velocity jump A(7)  across the shock generated by impulsively started, 
periodic piston motion 0, = in COB (n7), as calculated from (77). The dashed line is the value of 4 7 )  

for a shock of identical initial amplitude, when the piston remains static, aa calculated from (74). 

curves. A similar result has been reported by Schneider (1981). In both of the earlier 
studies only pressure variations on the piston surface for the first half-cycle of the 
piston motion were shown, and the damping of the shock was attributed solely to the 
expansion signals emitted from the piston. 

Finally, this section is concluded by emphasizing that the transformation (60) 
allows physically meaningful solutions to the infinite system (43) only for A ,  0. 
Under this circumstance the solution developed above provides the unique weak 
solution to the Euler equations. If Ai < 0, however, Euler equations have an infinite 
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number of mathematically weak solutions. Since the transformation (60) does not 
allow the rarefaction discontinuity to be flattened out, the solution obtained 
represents a propagating rarefaction shock which is physically irrelevant. In  this case 
one has to solve the approximate version of the infinite system (43), (44) instead, in 
order to obtain physically meaningful solutions. One example has already been 
demonstrated in 54.3, for the case of an impulsively started piston motion with a 
negative constant velocity. 

6. Concluding remarks 
In the present study an analytical procedure is combined with numerical 

techniques to analyse the evolution of small-amplitude waves in a variable-volume 
cylinder. The solutions are written as eigenfunction expansions with spatially 
harmonic basis functions (cf. (49) and (50)). The time-dependent Fourier coefficients 
consist of products of fast-varying harmonic functions and more slowly varying 
functions. The latter are computed from a system of the coupled, nonlinear ordinary 
differential equations (43) and (44). This method is seen to be equivalent to the 
spectral method, which has found wide use in recent years in solving certain types 
of partial differential equations. The numerical results obtained in this study suggest 
that the method can be used most effectively to provide approximate solutions to 
hyperbolic systems in the absence of spatial and temporal discontinuities. 

The truncation errors associated with the presence of shocks in the evaluation of 
(43) and (44) deserve special attention because they destabilize the solution. To 
assess the effect of the truncation errors on the discontinuous solutions, the density 
variations on the piston surface in the case of an impulsively started, constant- 
velocity piston motion, are evaluated based on both the truncated version of (43), 
(44) and (50), and the exact solution (67) where A = 1. The results are illustrated in 
figures 13 ( a )  and 13 (b)  respectively where 200 Fourier terms are summed. Obviously, 
the truncation error appears first as a small cusp on the solution curve in figure 13 (a ) ,  
which is magnified gradually as it propagates at the local sound speed. Apart from 
the cusped regions the solution is not appreciably affected by the truncation error. 
It is the same as the correct solution shown in figure 13 ( b ) .  This is typical for all the 
example calculations which involve shock formation conducted in our study. Since 
the truncation errors do not spread out randomly in the solution, one can easily 
detect the first sign of error in the solution. Before it occurs the solution is reliable. 
It is important to observe that the erroneous signal always originates after the shock 
formation, and once it is formed, it follows the shock wave with a phase lag of n. 

The similarity transformation (60) allows great simplifications and much improved 
accuracy for a class of solutions that contain a travelling shock embedded between 
two straight lines of identical slope in a confined domain, or sawtooth solutions. 
These solutions describe the long-time limiting shapes for shocks formed from a 
smooth compression wavefront, as discussed in $4, as well as shocks generated by 
impulsively started piston motion. The nonlinear response of shock amplitude to the 
piston motion is described by (77). 

In comparison to the more conventionally employed method of characteristics, the 
Fourier series technique is seen to possess the following advantages in solving the 
present gasdynamic problem : (i) The solution procedure is simple and straight- 
forward. Since there is no need for transformations of independent variables, it  is not 
necessary to expand the time and space variables in the asymptotic procedures. (ii) 
The resulting secular equations are ordinary rather than partial differential 
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FIGURE 13. Density variations of the gas on the piston surface, due to impulsively started piston 
motion up = 1. The piston Mach number E = 0.02. (a) Based on the truncated version of (43), (44) 
and (50); (b) based on solution (67) where A = 1. 

equations. This allows solutions by a relatively simple numerical technique. (iii) 
Physical interpretation of the results is straightforward. One can readily identify 
from the analytical expressions the bulk effects and the acoustic phenomena, and the 
interactions between them. (iv) Special treatment associated with shock waves, 
necessary when the characteristics method is used, can be avoided. The shock 
location as well as the Rankine-Hugoniot jump conditions are obtained naturally 
from the series solutions. 

The description of shock waves by the method of characteristics inevitably leads 
to spurious multivalued regions. The area rule (Whitham 1974) provides a universally 
valid remedy to help select the physically meaningful solutions. The Fourier series 
description of a shock is simpler in this respect because it is necessarily single-valued. 
On the contrary, for waves generated by rarefaction discontinuities, such as the case 
of an impulsively started backward piston motion, the method of characteristics 
always provides the unique correct solution, while the Fourier series solutions of the 
Euler equations are not unique. In this case solutions based on the similarity 
transformation technique (cf. (60) and (77)) and the truncated version of (43) and 
(44) are both mathematically acceptable. There is, however, also a remedy to the 
uncertainty based on the well-known entropy theory (Lax 1973). The solution based 
on (60) and (77) must be dismissed as it describes a spurious expansion shock, while 
the other solution, exemplified in figure 5 ,  is the physically relevant solution. 

The major drawback of the current method lies in its inaccuracy in describing the 
wave field after the shock formation but before it reaches the sawtooth asymptotic 
state, due to large truncation errors in approximating the infinite equation system 
(43) and (44). One possible approach to overcome this difficulty is to divide the 
physical region into two parts of variable length, separated by the travelling shock 
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discontinuity. Fourier series representations may be employed to construct solutions 
on either side of the shock, while Rankine-Hugoniot conditions may be applied to 
relate the two continuous solutions across the shock. In  that case better convergence 
of the Fourier series can be expected because they are only used to represent 
continuous solutions. The feasibility of this proposal is currently under investigation. 

The following conclusions can be drawn from the mathematical analysis of the 
present study : I n  a gas-filled piston-cylinder system, small-amplitude gasdynamic 
waves can be generated by initial disturbances in velocity as well as thermodynamic 
state of the gas. The waves, whose amplitudes are of comparable magnitudes with 
the small piston Mach number E ,  are nonlinear in nature on the timescale of piston 
motion. As they propagate back and forth repeatedly inside the cylinder, nonlinear 
effects cause deformation of the waveform. Weak shock formation will occur from an 
initially continuous compression wavefront. Repeated passage of the gasdynamic 
waves generate the accumulative effect of bulk gas response to the piston motion, 
which are to order E identical to those from equilibrium thermodynamic calculations. 
This bulk variation of the background-gas state does not alter the nonlinear wave 
deformation and shock formation processes in a fundamental way. The shock 
formation time increases with decreasing amplitude of the disturbance. The 
frequency of wave passage in the cylinder increases as the gas is compressed and 
decreases when it expands. Long-time shock evolution as well as impulsively started 
piston compression result in a sawtooth-like wave field. The shock strength depends 
on the piston velocity and the bulk density of the gas. The internal dissipation causes 
significant attenuation of the shock. 
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